Question	Answer	Mark
Number		
1	QWC - spelling of technical terms must be correct and the answer must be organised in a logical sequence	
	Identifies two rays of light	(1)
	Two rays have same frequency/come from same source/are coherent	(1)
	Path difference (between the two reflected rays)	(1)
	They superpose (when they meet) /constructive and destructive interference occur	(1)
	If they meet in phase/n λ / λ path difference, constructive interference/ bright fringe	(1)
	If they meet in antiphase / (n+ ½) λ / ½ λ path difference, destructive interference/dark fringe	(1)
		(max 5)
	Total for question	5

Question Number	Answer	Mark
2 (a)	n = sin 48 / sin 30 n = 1.5 (common answer will be 1.49) (n = 0.67 scores 1 mark for idea of ratio of sin of angles)	(1) (1)
2(b)(i)	QWC - spelling of technical terms must be correct and the answer must be organised in a logical sequence	
	As x increases, y increases OR	
	At a certain angle / critical angle, $y = 90^{\circ}$ / the light travels along the boundary (do not allow reflects at 90°)	(1)
	For angles greater than the <u>critical</u> angle (in glass) <u>total internal reflection occurs</u> (do not accept TIR)	(1) (1)
2(b)(ii)	Use of sin $c = 1/n$ $c = 42^{\circ}$ ecf <i>n</i> from (a) unless <i>n</i> = 0.67 which scores 0 here	(1) (1)
	Total for question	7

Question	Answer	Mark
Number		
3 (a)	Ray drawn along edge of prism (labelled X) (ignore a reflected ray)	1
(b)(i)	$n = 3 \times 10^8 \div 1.96 \times 10^8$	1
	n = 1.53 (no unit, ue if one given)	1
(b)(ii)	Use of sin (critical angle) = 1/ n OR use of sin i/sin r = v_1/v_2	1
	= n	1
	$c = 41^{\circ}$	
(c)	Red light: refraction towards normal at first face but less	1
	than refraction for blue light	1
	Refracts into air at second face with angle in air > angle in glass	
	Total for question	7

Question	Answer		Mark
Number			
4(a)	Use of $\sin i \times v_2 = \sin r \times v_1$	(1)	
	$r = 90^{\circ}$ at critical angle	(1)	
	critical angle = 75°	(1)	
	Acceptable alternative:		
	Use of $_{1}\mu_{2} = v_{1} / v_{2}$	(1)	
	State sin $c = 1 / \mu$	(1)	
	$c = 75^{\circ}$	(1)	3
	($\mu = 1.036$, but look out for effects of rounding on calculated angle)		
	Example of calculation		
	$\sin c / 1 = 1.96/2.03$		
	$c = 75^{\circ}$		
4(b)	It will be reflected (back into the core) / totally internally reflected	(1)	
	Reflection back into core may be shown on the diagram		
	(allow e.c.f for value of c from (a))		
A (-)	Mast of the light will up denote an estad (total internal) with the Ori		
4(C)	wost of the light will undergo repeated (total internal) reflection Or		
	most light continually strikes at greater than the critical angle Or	(1)	
	minimal light is lost through refraction		
	Light reaches the bottom of the curtain \mathbf{Or} Pays bitting the bottom will	(1)	2
	Light reaches the bottom of the curtain Or Kays intring the bottom will	(1)	4
	escape Or right filts the bottom at less than the critical angle		
	Total for question 18		6

Question Number	Answer	Mark
5(a)(i)	Use of $n = v_1/v_2$ with λ proportional to v (1) (seeing 1.53×414 or $414/1.53 = 271$ nm gets 1st mark) Wavelength in disc = 633 nm (1) (Alternative method finds v in plastic, then f of wave, leading to λ in air. Correct answer by this method scores 2 but incorrect answer can score the method mark)	2
	Example of calculation n = wavelength in air /wavelength in disc λ in air = 1.53 × 414 = 633 nm	
5(a)(ii)	Division of a wavelength by 2 or 4 (414 nm or their λ from (a)(i))(1)Vertical distance = 104 nm or 1/4 their λ from (a)(i)(1)	2
5(a)(iii)	Destructiveinterference / superposition(1)Amplitude/intensity of wave is zero/min OR binary value zeroOR there is min/no light OR the waves cancel/almost cancel each otherOR cancellation	2
5(b)(i)	Use of sin critical angle = $1/n$ (1) $c = 40.8^{\circ}$ (accept 41 °) (1) [bald answer of 41° scores zero] <u>example of calculation</u> sin $c = 1/1.53$ $c = 40.8^{\circ}$	2
5(b)(ii)	Marks can only be scored for answers where the light is only in the plastic Reflection shown at point P (1) Angle of incidence = angle of reflection (judge by eye) and greater than their	
	critical angle from (b)(i) (1) (do not penalise if arrows not drawn . Labels could override poor drawing) Total for question 19	2

Question	Answer		Mark
Number			
6(a)	Credit any sensible limitation	(1)	
	Examples include:		
	• blunt pencil,		
	• protractor divisions only to one degree,		
	• protractor of limited radius		
	• method requires rays to be marked and then drawn on		
	Limited precision – linked to limitation	(1)	2
	···· r		
6(b)	Use of refractive index = ratio of speeds	(1)	
	Speed = $2.0 \times 10^8 \text{ m s}^{-1}$	(1)	2
	Example of calculation		
	speed in plastic = 3.0×10^8 m s ⁻¹ ÷ 1.52		
	$= 1.97 \times 10^8 \text{ m s}^{-1}$		
6(b)(ii)	Use of sin $c = 1/\mu$, sin $c = 1/n$ (or equivalent, but must allow full solution if used		
	correctly without further equations)	(1)	
	critical angle = 41°	(1)	2
	Example of calculation		
	$\sin c = 1/1.52$		
	<i>c</i> = 41°		
*6(c)	(QWC – Work must be clear and organised in a logical manner using		
	technical wording where appropriate)		
	The light strikes the sides at an angle greater than the critical angle	(1)	
	It undergoes total internal reflection	(1)	
	It is reflected again	(1)	
	It strikes the other end at less than the critical angle Or It is transmitted at the final		
	boundary Or the ray has zero angle of incidence at the first end and is transmitted		
	undeviated	(1)	4
	Total for question 15		10

Question	Answer		Mark
Number			
7 (a)	change in direction / wavelength (of wave/ray/light)	(1)	
	(when entering a medium where) the wave has a different velocity		
	OR (when entering a medium where) the density is different	(1)	
	the light travels at a lower speed in the air than in a vacuum	(1)	3
7 (b)	identify angle of incidence = 64°	(1)	
	use of $\sin i / \sin r =$ refractive index	(1)	
	$r = 63.9^{\circ}$ to at least 3 sf	(1)	
	calculation of difference = 0.12°	(1)	4
	Example of calculation		
	$\sin r = \sin i \div \mu$		
	$= \sin 64^{\circ} \div 1.001$		
	$r = 63.88^{\circ}$		
	difference = 0.12°		
	Total for question 15		7